Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Drug Resist ; 16: 2829-2840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193301

RESUMO

Background: Kidney transplant recipients (KTRs) commonly suffer from impaired immunity. KTRs' compromised immune response to COVID-19 vaccines indicates urgent revision of immunisation policies. Methods: A cross-sectional study was conducted in Madinah, Saudi Arabia of 84 KTRs who had received at least one dose of a COVID-19 vaccine. ELISA was used to evaluate anti-spike SARS-CoV-2 IgG and IgM antibody levels in blood samples obtained one month and seven months after vaccination. Univariate and multivariate analyses were performed to identify associations between seropositive status and factors such as the number of vaccine doses, transplant age, and immunosuppressive therapies. Results: The mean age of KTRs was 44.3 ± 14.7 years. The IgG antibody seropositivity rate (n=66, 78.5%) was significantly higher than the seronegativity rate (n=18, 21.4%) in the whole cohort (p<0.001). In KTRs seroconverting after one month (n=66), anti-SARS-CoV-2 IgG levels declined significantly between one month (median [IQR]:3 [3-3]) and seven months (2.4 [1.7-2.6]) after vaccination (p<0.01). In KTRs with hypertension, IgG levels significantly decreased between one and seven months after vaccination (p<0.01). IgG levels also decreased significantly in KTRs with a transplant of >10 years (p=0.02). Maintenance immunosuppressive regimens (triple immunosuppressive therapy and steroid-based and antimetabolite-based regimens) led to a significant decrease in IgG levels between the first and second sample (p<0.01). KTRs receiving three vaccine doses showed higher antibody levels than those receiving a single dose or two doses, but the levels decreased significantly between one (median [IQR]: 3 [3-3]) and seven months (2.4 [1.9-2.6]) after vaccination (p<0.01). Conclusion: KTRs' humoral response after SARS-CoV-2 vaccination is dramatically inhibited and wanes. Antibody levels show a significant decline over time in KTRs with hypertension; receiving triple immunosuppressive therapy or steroid-based or antimetabolite-based regimens; receiving mixed mRNA and viral vector vaccines; and with a transplant of >10 years.

2.
Front Pharmacol ; 12: 631216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995030

RESUMO

Recently, the therapeutic importance of the anti-rheumatic drug, leflunomide, has been increased after the involvement of leflunomide in treating other autoimmune diseases and its promising role in retarding human malignancies. Few studies have focused on the safety in human or animals without clear outlining of the pathologic features on target organs. One clinical study related leflunomide with significant pulmonary complications in predisposed individuals. The current study examined the dose-dependent lung injury produced by leflunomide in healthy mice. Albino mice were allocated into four different groups. Group (1): Vehicle control group, Group (2-4): mice received leflunomide (2.5, 5 or 10 mg/kg), respectively, for 8 weeks and then lungs were dissected from the mice for histopathological examination and fibrosis evaluation (Masson's trichrome staining and α-smooth muscle actin immunohistochemistry). Enzyme linked immunosorbent assay was used to assess the vimentin and other inflammatory factors in the lung homogenate whereas Western blot analysis was employed to assess α-smooth muscle actin, vimentin and collagen 1. Results indicated that leflunomide induced dose-dependent pulmonary injury and the high dose and increased the vimentin, inflammatory markers (NLRP3 and interlukin-1ß). Histologic examination showed distorted architecture, marked inflammatory cells infiltrate and increase collagen content. The findings were supported by Western blotting and the immunohistochemical study which showed greater pulmonary α-smooth muscle actin and vimentin content. In conclusion, the current results highlighted that leflunomide produced dose-dependent pulmonary toxicities that requires further investigation of the nature of injury.

3.
Front Genet ; 12: 597983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889172

RESUMO

Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for developing its successful interventions. The architecture of the SB network, constructed from 117 manually curated genes was found to self-organize into a scale-free fractal state having a weak hierarchical organization. We identified three modules/motifs consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3, TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they propagate signals through the different hierarchical levels of the network to conserve the network's stability while maintaining low popularity in the network. We also observed that the SB network exhibits a rich-club organization, the formation of which is attributed to our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally with each other and emerge in the same motif, open up a new dimension of research of studying these KRs together. Owing to the multiple etiology and mechanisms of SB, a combination of several biomarkers is expected to have higher diagnostic accuracy for SB as compared to using a single biomarker. So, if all the KRs present in a single module/motif are targetted together, they can serve as biomarkers for the diagnosis of SB. Our study puts forward some novel SB-related genes that need further experimental validation to be considered as reliable future biomarkers and therapeutic targets.

4.
Mol Neurobiol ; 58(5): 1875-1893, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33409839

RESUMO

Although COVID-19 largely causes respiratory complications, it can also lead to various extrapulmonary manifestations resulting in higher mortality and these comorbidities are posing a challenge to the health care system. Reports indicate that 30-60% of patients with COVID-19 suffer from neurological symptoms. To understand the molecular basis of the neurologic comorbidity in COVID-19 patients, we have investigated the genetic association between COVID-19 and various brain disorders through a systems biology-based network approach and observed a remarkable resemblance. Our results showed 123 brain-related disorders associated with COVID-19 and form a high-density disease-disease network. The brain-disease-gene network revealed five highly clustered modules demonstrating a greater complexity of COVID-19 infection. Moreover, we have identified 35 hub proteins of the network which were largely involved in the protein catabolic process, cell cycle, RNA metabolic process, and nuclear transport. Perturbing these hub proteins by drug repurposing will improve the clinical conditions in comorbidity. In the near future, we assumed that in COVID-19 patients, many other neurological manifestations will likely surface. Thus, understanding the infection mechanisms of SARS-CoV-2 and associated comorbidity is a high priority to contain its short- and long-term effects on human health. Our network-based analysis strengthens the understanding of the molecular basis of the neurological manifestations observed in COVID-19 and also suggests drug for repurposing.


Assuntos
Encefalopatias/genética , COVID-19/genética , Redes Reguladoras de Genes , SARS-CoV-2 , Estudos de Associação Genética , Humanos , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...